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Abstract

In this paper a new classifier has been designed based on the learning automata. This classifier can efficiently approximate the decision
hyperplanes in the feature space without need to know the class distributions and the a priori probabilities. The performance of the pro-
posed classifier has been tested on different kinds of benchmarks with nonlinear, overlapping class boundaries and different feature space
dimensions. Extensive experimental results on these data sets are provided to show that the performance of the proposed classifier is
comparable to, sometimes better than multi-layer perceptron, k-nearest neighbor classifier, genetic classifier, and particle swarm classifier.
Also the comparative results are provided to show the effectiveness of the proposed method in comparison to similar researches. Further-
more the effect of the number of training points on the performance of the designed classifier is investigated. It is found that as the number
of training data increases, the performance of the classifier tends to the performance of Bayes classifier which is an optimal one.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Learning automata (LA) is referred to an automaton
acting in an unknown random environment which
improves its performance to obtain an optimal action.
An action is applied to a random environment and the ran-
dom environment evaluates the applied action and gives fit-
ness to the selected action of automata. The response of the
environment is used by automata to select its next action.
This procedure is continued to reach the optimal action.

LA has been used in several tasks of engineering prob-
lems (for example graph partitioning (Oommen and de
St.Criox, 1996) adaptive control (Zeng et al., 2000), signal
processing (Tang and Mars, 1993), and power systems
(Wu, 1995)).

Also there are researches which explain some applica-
tions of LA in pattern recognition tasks. For example Sas-
try and Thathachar proposed algorithms based on teams of
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learning automata for pattern classification (Sastry and
Thathachar, 1999). In their algorithms, the users should
know the optimal parameter representation for the dis-
criminant functions to reach a good recognition score.
They also used a three-layer network consisting of teams
of automata for pattern classification (Sastry and Thatha-
char, 1999; Thathachar and Sastry, 2002). They tested a
network consisted of nine first layer and three second-layer
units on the two-class version of the Iris data set (Sastry
and Thathachar, 1999; Thathachar and Sastry, 2002).
Recently some effective algorithms have been proposed
for multimodal complex function optimization based on
the LA (e.g. Zeng and Liu, 2005; Beygi and Meybodi,
2006). It was shown experimentally that the performance
of these optimization algorithms is comparable to or better
than the genetic algorithm (GA) (Zeng and Liu, 2005). On
the other hand, the powerfulness of GA and particle swarm
optimization (PSO) algorithm in the search space (here,
feature space) motivated the authors to present novel and
effective classifiers which need no important prior knowl-
edge. For example, Bandyopadhyay et al. (1999) proposed
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a genetic algorithm based classifier (called GA-classifier).
Also Zahiri and Seyedin (2007) introduced another classi-
fier based on the particle swarm optimization algorithm
(called PS-classifier). Now, it is possible to propose another
effective classifier, using function optimization algorithms
based on the LA. This is named LA-classifier.

In this article a LA-classifier is described which utilizes
LA for function optimization to find the decision hyper-
planes between the different classes without any important
prior knowledge. In the proposed algorithm the feature
space is separated into individual regions with predefined
number of hyperplanes and it is not necessary to know
the optimal parametric representation of discriminant
functions. Note that a characteristic feature of the LA-clas-
sifier is that it utilizes the decision boundary for performing
classification. This is in contrary to the conventional
pattern-classification techniques where the decision bound-
aries are obtained as a consequence of the decision-making
process.

Moreover, in this paper, the effect of the number of
training points on the performance of the LA-classifier
has been considered by comparison of its performance with
Baysian classifier, which is an optimal classifier.

Five common benchmarks have been considered for
comparative experimental results to investigate the effec-
tiveness of the proposed classifier. Those are Iris, Wine,
Glass, Appendicitis, and Cancer data classification with
different feature space dimensions (4-13), nonlinear and
overlapping class boundaries.

Performance evaluation of the designed classifier on
aforesaid data sets and its comparison with different kinds
of conventional and novel classifiers (k-nearest neighbor,
multi-layer perceptron, GA-classifier, and PS-classifier)
show that the averages of recognition scores of the
designed LA-classifier are better than or comparable to
other aforementioned classifiers. Also the comparison
between the LA network classifier which was proposed
by Sastry and Thathachar (1999) and Thathachar and Sas-
try (2002), and our algorithm shows a considerable
improvement for LA-classifier.

Furthermore, it is found that as the number of training
points increases, the performance of the new classifier tends
to the Bayes classifier which is an optimal classifier when
the class distribution and the prior probabilities are known.

In this paper, Section 2 describes the basic principles of
learning automata. Learning automata based classifier is
introduced in Section 3. Section 4 considers implementa-
tion of the classifier and experimental results on the five
aforesaid pattern recognition problems and comparison
with existing methods. Finally, conclusion and discussion
is presented in Section 5.

2. Principles of learning automata
Learning automata (LA) are adaptive decision-making

units that can learn to choose the optimal function from
a set of actions by interaction with an environment (search

Environment
<A, R, D>

Y

Learning automaton
<A, O, R L>

A

Fig. 1. Automaton operating in the environment.

space). In the other words a learning automaton is a sto-
chastic automaton in feedback connection with a random
environment. Each learning automaton is characterized
by a set of internal states, input actions, state probability
distributions, a reinforcement scheme, and is connected
in feedback loop to the environment as shown in Fig. 1.

One main advantage of learning automaton is that it
needs no important knowledge of the environment in
which it operates or any analytical knowledge of the func-
tion to be optimized.

A finite learning automata is generally defined by
(4,0,R,L) and the environment by (4, R, D), where 4 =
{ag,00,...,0,} is defined as all actions of the automaton
where o(k) is the automaton at the instant k and a(k) € 4
fork=0,1,2... and r is the total number of actions. In fact
A is the set of outputs of the automaton and it is also the set
of inputs to the environment. R is the domain of responses
from the environment. Let (k) denote the response received
by the automaton at instant k where (k) € R Vk. f(k) is the
output of the environment and it is also the input to the
automaton. D = {d,,d,,...,d,} is the set of reward proba-
bilities, where d(k) = E[f(k)|o(k) = a;]. The reward proba-
bilities are unknown for the automaton. Q is the state of
the automaton defined by Q(k) = [P(k),D(k)] where
P(k) = [pi(k),pa(k),...,p k)] is the action probability
vector (0 < p;(k) <1 and Y p,(k) =1, Vk) and D(k) =
[d (k). d(k), ..
probabilities at instant k. L is the learning algorithm or the
reinforcement scheme which is used by the automaton in
order to update its state. In fact Q(k+ 1)= L(Q(k),
(k). (k).

At each instant k, the automaton selects an action a(k)
from the set of all actions A. This selection depends on
the current action probability vector P(k). The selected
action o(k) becomes input to the environment and the envi-
ronment gives the input of the automaton a random
response f(k) whose expected value is dik) if a(k)=o,.
Next, the automaton calculates Q(k + 1) using the rein-
forcement scheme L.

This procedure is continued until the optimal action to
the environment is found. We denote the optimal action
as o, with expected value of d, =Max{d;} for all
i=1,2,...,r. It is desired that the action probability
corresponding to o, tends to unity as the time k goes to
infinity.

,d (k)] is the vector of estimates of the reward
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Two main groups of LA are finite action set LA (FALA)
and continuous action set LA (CALA). If r — oo the afore
described finite action set LA is changed to CALA. Several
kinds of FALA and CALA have been reported in the liter-
ature (e.g. Thathachar and Sastry, 2002). But they have
common principles as explained above.

3. Learning automata based classifier

Learning automata based classifier (LA-classifier) is
established on two major parts including decision hyper-
planes and function optimization using LA which are
appeared in details below.

3.1. Decision hyperplanes

A general hyperplane is in the form:
d(X) = WIX] + WaXy + - WXy + Wiy (1)

where X = (x1,X2,...,X,, 1) and W= (wy,wp,..., Wy, Wyt1)
are called the augmented feature and weight vector respec-
tively. n is the feature space dimension.

In a general case, there are a number of hyperplanes
(logjzw , 1s the minimum value, where M is the number of
classes) that separate the feature space to different regions,
where each region distinguishes an individual class. Fig. 2
shows a simple example containing six classes encoded by
three decision lines. In this figure, IR denotes the indeter-
minate region.

Some special cases are shown in Fig. 3 (Tou and Gonz-
alez, 1992).

In Fig. 3a the decision of classifier depends on the sign
of each decision line. It means that:

XeC ifdX)=wXx>0, i=12...,M, (2)

where d{ X) can be the ith hyperplane, C; is the ith class and
W is the weight vector for the ith hyperplane.

Fig. 3b shows the case that each pattern class is separa-
ble from other classes by a distinct decision surface, that is,
the classes are pairwise separable, M * (M — 1)/2 number
of hyperplanes are needed and no indeterminate regions

of G

Class6
(100)
=_|

&l
{010) d3(x)

Fig. 2. Each region can identify an individual class by its code, which
obtained from the sign of linear decision functions.

X1

(IR) exist. In this case the decision functions are of the
form:

dy(X) = di(X) — d;(X) = WX — WX
= (Wi =W)X =W,X. (3)

So the classifier rule will be:

or

The LA-classifier must find W, (i=1,2,..., H) in solu-
tion space, where H is the number of decision hyperplanes
and should be predefined by user.

3.2. Function optimization algorithms based
on the learning automata

As mentioned in Section 1 the proposed classifier has
been established on the basis of function optimization
using LA. We define a function on the weight vectors var-
iable of W as below:

S (W) = Miss. (5)

In Eq. (5) W= {W, W>,..., Wy} is the set of all H hyper-
planes weigh vectors and Miss is the number of misclassi-
fied data points by W. Thus f(W) returns the total
number of misclassified training points by a set of weight
vectors of W. Obviously by minimizing f{¥) it is possible
to calculate the H hyperplanes. Utilizing a powerful func-
tion optimization algorithm based on the learning auto-
mata leads us to design LA-classifier.

Many kinds of gradient, heuristic, evolutionary and
swarm intelligence based algorithms have been reported
in the literature. Among them genetic algorithm (GA)
and particle swarm optimization (PSO) are two powerful
and famous optimization algorithms such that two novel
evolutionary and swarm intelligence based classifiers (i.e.
GA-classifier and PS-classifier) were designed based on
them (Bandyopadhyay et al., 1999; Zahiri and Seyedin,
2007). Both GA-classifier and PS-classifier search the fea-
ture space to obtain a set of hyperplanes minimizing the fit-
ness function defined by Eq. (5).

But related to LA area of researches, over the years,
many studies on the LA based function optimization tech-
niques were reported. A stochastic automata model was
adopted by Shapiro and Narendra (1969) to find an opti-
mal solution for multimodal performance criteria. Thatha-
char and Sastry (1985) proposed Pursuit algorithm to
improve the convergence rate of LA based function optimi-
zation. Also an automata model was proposed by Oommen
and Lanctot (1990), using discretized Pursuit algorithm.
Obaidat et al. (2003) developed an algorithm for fast con-
vergence of learning automata. Beygi and Meybodi (2006)
proposed a continuous action-set automaton for function
optimization. They studied the convergence properties of
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Fig. 3. (a) Each class is separable from other classes and (b) the classes are pairwise separable.

their algorithm theoretically and experimentally. Also Zeng
and Liu (2005) presented a method for optimizing contin-
uous functions using LA. Their method enhances local
search in interesting regions or intervals and reduces the
whole searching space by removing useless regions.

We used the optimization algorithm introduced by Zeng
and Liu (2005) for designing the proposed classifier because
they showed experimentally that their proposed LA based
optimization algorithm works even better than genetic
algorithm.

In this algorithm at first the solution space is uniformly
divided into r hypercubes each corresponding to one action
of the learning automaton. Then using continuous Pursuit
algorithm the action probabilities and estimates of reward
probabilities are updated at each period by calculating the
function value of a randomly selected sample correspond-
ing to the current action. If the estimate of a reward prob-
ability is smaller than a predefined threshold, the
corresponding hypercube is then evaluated according to
the samples whose function values have been calculated.
If both the mean value and the variance of these function
values are small enough, this hypercube is considered as
stable and useless. Then, this hypercube is removed and
the optimization continues with the remaining » — 1 hyper-
cubes. Otherwise, this hypercube is considered as unstable
and the rising and falling (pinks and valleys) of the func-
tion are estimated in this hypercube from the samples
inside it. Next, this hypercube is divided into a number
of sub-hypercubes each only containing ascending or
descending samples and the original hypercube is replaced
by the best rewarded sub-hypercube. The other sub-hyper-
cubes are considered as useless and then removed. In this
way, the number of actions is unchanged. This procedure
is repeated until a predefined precision condition is satis-
fied. Then, original hypercubes are either removed or con-
verge to several values in which are included a quasi-global
optimum, i.e. a solution whose function value is rather
close to that of the global optimum. Like other stochastic
optimization algorithms, this method aims at finding a
compromise between exploration and exploitation, i.e. con-
verging to the nearest local optima and exploring the func-
tion behavior in order to discover global optimal region.

3.3. The structure of LA-classifier

According to above descriptions the structure of LA-
classifier based on minimizing f{W) is as follows:

Step 1: Initialization of internal parameters

Internal parameters are:

r: Number of hypercubes which divide the feature space
0: Threshold of action probabilities

s: Normalized factor of convergence

& Error band

Step 2: Divide the feature space into r hypercubes

Each hypercube is supposed as an action denoted by «;,
e{l,2,...,r}.

Corresponding to each action there are some parameters
introduced as below:

n{n): Total reward obtained by the action «; until nth
sampling instant.

z{n): Number of times the action o, is chosen until nth
sampling instant.

n:(n)
&i(n) = z(n) )
En(n) = Max,{&(n)},
¢ (n) = Min{;(n)}.
p(n): Action probability distribution of «; at nth sam-
pling instant with initial value of L.

Step 3: Search loop

Repeat

— Pick up an action o(n) = a{n) according to p(n).

— Randomly select a set of decision weight vector of H
hyperplanes in the form of W= { W, W,,..., Wy} from
the hypercube corresponding to a;.

— Calculate fi¥).

— Update &,(n) as follows:

If a(n) = o;, Then
T /(W)

n(n+1)=mnn)+ T )
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where T is the total number of training data permit-
ting to normalize the estimates of reward probabili-
ties to the interval [0, 1]

z(n+1)=zn) +1,
~n(n+1)
Em+1) “ L)

For all j # i

n;(n+1) = n;(n),
zi(n+1) = z(n),
Ei(n41) = &(n).
— Update p(n) as follows:
pn+1) = (1 =s5x&,(n) x p(n) + 5% &u(n) * em,

;(e,, 1s a r-dimensional vector with mth component
unity and all others zero)

— If p(n) = Min,{p{n)} <o, Then
Go to the next step,

— Else

n=n+1,
End Repeat;

At this step, the action probability distribution p(n) and
estimates of reward probabilities £{n) are updated using
continuous pursuit algorithm. Evidently, the values of
&(n) vary proportionally with the current value of f{I¥)
and the values of p(n) vary with the best reward probability
estimate ¢,,(n). If &,,(n) is strongly rewarded, its values are
close to 1 and then the updated distribution of action prob-
abilities enhances the selection of the corresponding action
a,, for the following instants. If the estimates of all reward
probabilities are strongly penalized, their values are close
to 0 and the distribution of action probabilities maintains
almost unchanged for following instants.

Step 4: Enhancing the search process in /th hypercube

At this step the search process is enhanced in the / hyper-
cube by dividing it into r sub-hypercubes corresponding to
r new actions al’s (i=1,...,r):

— Recursively calculate the corresponding pl{n;)’s and
reward probabilities £/,(n;) using the equations at Step
2 and Step 3 until the following condition holds:

plq(l’ll) = mm{pll(nl)} < 51,

— Calculate the average reward Md and the variance
Var:

M, = lelflk(m’
i r

0<do<o <.

Var = max{|&l;(n;) — M¢|}.

— If Var <¢ and ¢&l,(ny) < ¢&,(n), Then

Remove the /th interval, (it is considered as stable and
useless for further search).
Subdivide a remaining hypercube into two sub-hyper-
cubes each corresponding to a new action (the total
number of actions is not changed).
Update p(n),
Go to Step 3;
— Else

Go to Step 5;

Step 5:

— Calculate y;,= &l (ny) — El(ny), i=1,...,r—1 (/th
hypercube is considered as unstable).

— Estimate from 7;’s the number of pinks and valleys of
fIW) in the lth hypercube, denoted by k.

— Redevide the /th hypercube into k sub-hypercubes each
corresponding to one pink or valley.

— Generate k new actions alm;, 1 < i< k, and repeat Step
S for calculating the action probabilities and reward
probabilities (let a/m be the action corresponding to
the biggest value of the reward probabilities).

— Replace the /th hypercube.

— If the hypervolume of this hypercube is smaller than
ethen go to Step 6, Else go to Step 3.

Step 6:

— Adding the midpoint of the /th hypercube to a list and
remove this hypercube.

— If the number of remaining hypercubes is zero, then
select the global optimum from the list and stop;

— Else, subdivide a remaining hypercube into two sub-
hypercubes each corresponding to a new action and go
to Step 3.

Briefly, by executing these steps, some of the hypercubes
with better action and reward probabilities are selected and
then the search process is enhanced in them. Each of them
is divided into r sub-hypercubes corresponding to r new
actions and the search loop is continued to reach the value
of W (weight vectors of the decision hyperplanes) which
minimizes f{W). In general the search loop continues for
a predefined number of iterations.

4. Implementation and results

Extensive empirical results are provided in this section
for demonstrating the effectiveness of the designed
LA-classifier. Five pattern recognition benchmarks with
different augmented feature vectors dimensions (5-14),
nonlinear, overlapping class boundaries, and different
number of reference classes (2-6) were used to evaluate
the performance of the LA-classifier. Also the performance
of the proposed classifier is compared to several kinds of
conventional, evolutionary and optimal classifiers. k-near-
est neighbor (k-NN), multi-layer perceptron (MLP) are
considered as two conventional and well-known classifiers.



iran-matlab.ir

S.-H. Zahiri | Pattern Recognition Letters 29 (2008) 4048 45

GA-classifier and PS-classifier are two novel classifiers
designed based on the evolutionary and swarm intelligence
algorithms respectively (Bandyopadhyay et al., 1999; Zah-
iri and Seyedin, 2007). Also three-layer network consisting
of teams of automata (named AN-classifier) as proposed
by Sastry and Thathachar (1999) and Thathachar and Sas-
try (2002) has been considered for comparative results.
Finally some experimental results are provided to show
the effect of the number of training points on the perfor-
mance of the proposed classifier.

This section is divided into three parts. The description
of the data sets is given in the first part. The comparison
results with selected conventional and novel classifiers are
presented in the second part. Finally, the third part shows
the effect of the number of training points on the perfor-
mance of the LA-classifier by comparing its performance
with that of the Bayes classifier which is an optimal classi-
fier when the class distribution and the prior probabilities
are known.

4.1. Data sets

Iris data:' The Iris data contains 50 measurements of
four features from of each three species Iris setosa, Iris ver-
sicolor, and Iris virginica. Features are sepal length, sepal
width, petal length and petal width.

Wine data:' The Wine data contains the chemical anal-
ysis of wines grown in the same region in Italy but derived
from different cultivars. The 13 continuous attributes are
available for classification. The number of classes is three
and the number of instances in each class is 59, 71 and
48 respectively.

Glass data:' The Glass data consists of 214 samples with
nine continuous attributes from six classes.

Appendicitis data:This data set consists of 106 samples
with seven attributes from two classes.

Cancer data: This breast cancer database, obtained from
the University of Wisconsin Hospital, Madison, has 683
breast mass samples belonging to two classes Benign and
Malignant, in a nine-dimensional feature space.’

4.2. Comparison with existing conventional and novel
classifiers

The performance of the proposed LA-classifier is com-
pared to the performance of k-nearest neighbor (k-NN),
multi-layer perceptron (MLP), genetic algorithm based
classifier (GA-classifier), particle swarm classifier (PS-
classifier), and network consisting of teams of automata
(AN-classifier). MLP and k-NN are two well-known
conventional classifiers. GA-classifier and PS-classifier are
two new classifiers constructed based on the GA and

! This data set is available at University of California, Irvine, via
anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases.

2 This data set is available at http://www.ics.uci.edu/~mlearn/
MULRepository.html.

PSO respectively. AN-classifier is a method for data classi-
fication based on the LA proposed in (Sastry and Thatha-
char, 1999; Thathachar and Sastry, 2002).

To construct the LA-classifier the search space is sepa-
rated to individual regions in each problem using the rela-
tion r = z4, where r is the number of individual hypercubes,
q is the feature space dimension, and z is the number of
divided hypercubes for each variable (we take z=3 for
each problem). The maximum number of iterations is set
to 5000.

k-NN classifier is executed taking k equal to /7, where
T is the number of training samples (it is known that as the
number of training patterns 7" goes to infinity if the value of
k and k/T can be made to approach infinity and 0, respec-
tively, then k-NN classifier approaches the optimal Bayes
classifier (Fukunaga, 1972). One such value of k for which
the limiting conditions are satisfied is /7).

For MLP different structures were designed for each
problem and were used and trained in MATLAB 7.0.
These structures were selected experimentally; no optimiza-
tion technique was used because a traditional MLP classi-
fier was considered for comparing the results.

For GA-classifier a fixed population size of 20 was cho-
sen. The crossover probability was fixed at 0.8 and a vari-
able value of mutation probability was selected from the
range [0.015,0.333]. Initially was assumed a high value,
gradually decreasing at first, and then increasing again in
the later stages of the GA (Bandyopadhyay et al., 1999).

Also for PS-classifier, a swarm size of 20 was selected. A
large initial inertia weight equal to 0.7 was selected to facil-
itate global search and then decreasing it lower than 0.2 for
local search.

AN-classifier was constructed by nine first layer units
and three second-layer units. Each first layer units has a
number of automata just equal to the dimensions of the
feature vectors. Each automaton had nine actions which
were {—4,—3,-2,—1,0,1,2,3,4} and uniform conditions
were used (Sastry and Thathachar, 1999; Thathachar and
Sastry, 2002).

Experimental results

The proposed LA-classifier is tested on the data sets
described in Section 4.1. To estimate accurate generaliza-
tion rates for the proposed classifier, 2-fold cross validation
(2CV), 4-fold cross validation (4CV), and 10-fold cross val-
idation (10CV) are used. It means that 50% (for 2CV), 25%
(for 4CV), and 10% (for 10CV) of whole training samples
are randomly considered as testing points (validation sets)
and others as traditional training set for adjusting model
parameters in the classifier. The validation sets is used to
estimate the generalization of classifier. Generally, for m-
fold cross validation (here m = 2, 4, and 10) the whole train-
ing set is randomly divided into m disjoint sets of equal
size. Then the classifier is trained m times, each time with
a different set held out as a validation. The estimated per-
formance is the mean of these m score of recognition.
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Tables 1-5 present the results corresponding to Iris, Wine,
Glass, Appendicitis, and Cancer data classification for
2CV, 4CV, and 10CV. The number of hyperplanes in
LA-classifier was obtained manually for each problem.
Since LA-classifier has a randomized nature in its search
process, the results of this classifier obtained by averaging
over ten times repetitions.

It is shown in Table 1 that for 4CV and /10CV the recog-
nition ability of the classifier is considerably high for three

Table 1
Recognition scores (%) for Iris data with H = 4 hyperplanes

2Ccv 4CV 10CvV
Classl 87.2 92.9 95.7
Class2 86.1 92.4 94.9
Class3 93.1 93.1 95.1
Overall 88.8 92.8 95.2
Table 2
Recognition scores (%) for Wine data with H = 5 hyperplanes

2cv 4CV 10¢Ccv
Classl 68.1 85.3 95.1
Class2 73.8 88.9 94.2
Class3 76.1 85.6 93.4
Overall 72.7 86.6 94.2
Table 3
Recognition scores (%) for Glass data with H = 6 hyperplanes

2cv 4CV 0cv
Classl 57.1 67.1 73.9
Class2 40.4 60.9 78.3
Class3 50.8 63.5 73.4
Class4 55.8 61.8 83.5
Class5 59.5 68.9 75.2
Class6 68.8 75.5 79.6
Overall 55.4 66.3 77.3
Table 4
Recognition scores (%) for Appendicitis data with H = 3 hyperplanes

2Ccv Clos 1ocv
Classl 73.5 85.7 92.6
Class2 80.5 88.0 93.1
Overall 77.0 86.7 92.8
Table 5
Recognition scores (%) for Cancer data with H = 3 hyperplanes

2CcvV o 1ocv
Classl 85.6 91.2 93.6
Class2 81.6 89.9 95.2
Overall 83.6 90.5 94.4

classes for Iris data, which is known to have a very small
overlap.

Table 2 shows the classwise and overall recognition
scores for Wine data, which are again considerably high
for 4CV and 10CV.

Table 3 presents the results on all six classes of Glass
data. Although the obtained scores of recognition for all
cross validations are lower than other problems, but it
should be mentioned that the Glass data is the overlapping
and nonlinear benchmark in pattern recognition. These
results conform to earlier findings, when these set of data
was used for classifier evaluation in the literature.

Tables 4 and 5 show the performances of the algorithm
on the Appendicitis and Cancer data respectively. The
overall recognition scores for these two data sets (like Iris,
Wine and Glass data sets) show a gradual decrease with
decreasing the value of the number of training points. Con-
siderable performances of 92.8% and 94.4% were obtained
for Appendicitis and Cancer data at /0CV respectively.

A comparison of the performance of the LA-classifier is
made with that of the k-NN classifier, MLP, GA-classifier,
PS-classifier, and AN-classifier for /0CV. The results are
presented in Tables 6-10 for Iris, Wine, Cancer, Glass,
and Appendicitis data.

Table 6
Comparative recognition scores (%) for Iris data with H =4 and 10CV
k-NN MLP GA- PS- AN- LA-
classifier classifier classifier classifier
Classl 94.3 954 943 92.8 90.5 95.7
Class2 95.2 93.2 96.6 93.5 92.1 94.9
Class3 93.2 93.1 939 94.0 93.4 95.1
Overall 94.2 939 949 934 92.0 95.2
Table 7
Comparative recognition scores (%) for Wine data with H =5 and 10CV
k-NN MLP GA- PS- AN- LA-
classifier classifier classifier classifier
Classl 93.5 87.5 937 95.6 90.0 95.1
Class2 91.4 83.4 93.1 94.2 87.5 94.2
Class3 90.3 883 953 92.0 89.3 93.4
Overall 91.7 86.4 94.0 93.9 88.9 94.2
Table 8
Comparative recognition scores (%) for Glass data with # =6 and /0CV
k-NN MLP GA- PS- AN- LA-
classifier classifier classifier classifier
Classl 53.6 563 713 77.1 66.0 73.9
Class2 67.9 63.7 75.1 78.3 57.1 78.3
Class3 74.2 66.2  78.8 79.2 59.5 73.4
Class4 72.4 551 84.8 85.5 63.4 83.5
Class5 73.1 599 823 78.6 76.8 75.2
Class6 81.4 71.3 755 77.0 69.9 79.6

Overall 70.4 62.1  78.0 79.3 65.4 77.3
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Table 9
Comparative recognition scores (%) for Appendicitis data with H =3 and
0Ccv

k-NN MLP GA- PS- AN- LA-
classifier classifier classifier classifier
Classl 89.7 87.3 90.0 89.2 84.9 92.6
Class2 88.8 90.1 944 92.7 87.6 93.1
Overall 89.2 88.7 922 90.9 86.2 92.8
Table 10
Comparative recognition scores (%) for Cancer data with H = 3 and 10CV
k-NN MLP GA- PS- AN- LA-
classifier classifier classifier classifier
Classl 94.1 90.2 94.7 95.1 90.6 93.6
Class2 92.9 89.6 931 94.7 89.8 95.2
Overall 93.5 899 939 94.9 90.2 94.4

For Iris data (Table 6) the proposed classifier (LA-clas-
sifier) provides the best overall recognition score. The GA-
classifier and k-NN have the nearest performances to the
LA-classifier by 0.3% and 1% differences respectively. In
fact all the six classifiers appeared in Table 6 have a good
performance because the Iris data has not a considerable
complexity in the feature space.

For Wine data classification the proposed LA-classifier
provides the best overall recognition score. This is followed
by the scores for other classifiers in Table 7. The results in
Table 7 report 7.8% and 5.3% improvement for the overall
recognition score of LA-classifier in comparison to MLP
and AN-classifier respectively. Also the LA-classifier gives
2.5% overall recognition score well than the k-NN for Wine
data classification. In this case the performances of LA-clas-
sifier, GA-classifier, and PS-classifier are similar together.

Table 8 shows that the performances of two novel
genetic and swarm intelligence based classifiers (GA-classi-
fier and PS-classifier) are better than the proposed classifier
for Glass data classification; but only by differences of 0.7%
and 2% respectively. Also Table 8 shows that the LA-clas-
sifier has considerable performance differences in compari-
son to its similar method (AN-classifier) and two
conventional classifiers (k-NN and MLP).

Table 9 demonstrates the effectiveness of the LA-classi-
fier, where it has the best performance among all classifiers
for Appendicitis data classification.

For Cancer data classification, PS-classifier provides the
best performance of 94.9% (Table 10). Table 10 shows only
0.5% difference in performance of the proposed classifier in
comparison to the PS-classifier. Amounts of 4.5% and 0.9%
are the differences of the overall recognition scores between
the proposed LA-classifier and conventional MLP and k-
NN classifiers for Cancer data (Table 10). Comparison of
the LA-classifier and AN-classifier gives 4.2% improvement
for the proposed classifier for Cancer data (Table 10).

Also Tables 6-10 show that the performances of the pro-
posed classifier are comparable to, sometimes better than
the GA-classifier and PS-classifier.

An investigation on the standard-deviation of extensive
experimental results, reported in Tables 6-10 showed that
the standard-deviation of the proposed method likewise
GA-classifier, PS-classifier, and k-NN are close together
and lower than that of other classifiers for all benchmarks
for 10CV. It means a good robustness for the proposed
method, as well as PS-classifier, GA-classifier, and k-NN.

4.3. The effect of the number of training points

To show the effect of the number of training points in
the performance of the LA-classifier, comparative results
with Bayes classifier are presented. The Bayes classifier is
one of the most widely used in statistical pattern recogni-
tion which provides optimal performance from the stand-
point of error probabilities in a statistical framework. It
is known the best classifier when the class distributions
and the a priori probabilities are known. Consequently,
the desirable property of any classifier is that it should
approximate or approach the Bayes classifier under limit-
ing conditions.

Some parametric and non-parametric techniques have
been introduced for density function estimation (Tou and
Gonzalez, 1992) (e.g. maximum likelihood, Gaussian mix-
ture models, histogram, and Parzen windows). In this arti-
cle Parzen windows is used to estimate the density function
of the benchmarks. Also a priori probabilities of Z for
totally 7 training samples and 7; patterns from class i,
are considered.

Table 11 presents the comparative recognition scores
(%) for LA-classifier and Bayes classifier for 2CV, 4CV,
and /0CV. In this table the numbers of hyperplanes (H)
for LA-classifier are 4, 5, 6, 3, and 3 for Iris, Wine, Glass,
Appendicitis, and Cancer data respectively. From the

Table 11
Comparative recognition scores (%) for LA-classifier and Bayes classifier for all data sets
2Ccv 4CcVv 10cv
LA-classifier Bayes classifier LA-classifier Bayes classifier LA-classifier Bayes classifier
Iris 88.8 92.1 92.8 96.1 95.2 97.5
Wine 72.7 92.2 86.6 94.4 94.2 96.7
Glass 55.4 68.0 66.3 71.3 77.3 78.8
Appendicitis 717.0 86.8 86.7 94.8 923 97.3
Cancer 83.6 92.3 90.5 95.7 94.4 98.4




iran-matlab.ir

.

48 S.-H. Zahiri | Pattern Recognition Letters 29 (2008) 4048

results appeared in Table 11 it is found that as the number
of training points increases the performance of the pro-
posed LA-classifier tends to the Bayes classifier for all data
sets. This confirms the effectiveness of the LA-classifier in
estimation of the hyperplanes which are near to the opti-
mum one for the large number of training points.

Table 11 shows that the largest difference between the
performance of LA-classifier and Bayes classifier for
10CV appears for Appendicitis data classification by 5%.
For Iris data, Wine data, and Glass data we see a little dif-
ference between the score of recognition for these two clas-
sifiers (for /0CV). Those are 2.3%, 2.5%, and 1.5% for Iris
data, Wine data, and Glass data respectively. For Cancer
data it is found that the performance of Bayes classifier
has better rate of 4% for 10CV.

In fact the obtained results in Table 11 conform to this
proved theorem that “for a large number of training points,
the performance of any classifier, whose the criterion is to
reduce the number of misclassified points, approaches that
of the Bayes classifier” (Bandyopadhyay et al., 1999).

5. Discussion and conclusion

In this paper, a pattern-classification methodology
based on learning automata is proposed (called LA-classi-
fier). Multi-rate cross-validation methodology and different
kinds of benchmarks (with nonlinear, overlapping class
boundaries and dimensions ranging from four to thirteen)
provide extensive experimental results that indicate for a
given value of the number of hyperplanes (H), the LA-
classifier can effectively approximate the weight vectors of
decision functions to separate reference classes in feature
space. The performance of the classifier is also found to
be comparable to, sometimes better than, those of the con-
ventional (k-NN and MLP), evolutionary (GA-classifier),
and swarm intelligence based (PS-classifier) classifiers. Also
the performance of the LA-classifier is obtained more effec-
tive than AN-classifier which is a three-layer network con-
sisting of teams of automata for pattern classification.
Finally it is found that as the number of training points
increases the performance of LA-classifier tends to the per-
formance of Bayes classifier which is an optimal conven-
tional classifier (but with some limitations in usage due to
need to important priori knowledge).

Regarding the timing requirements, it may be noted that
the LA-classifier takes a large amount of time during train-
ing like MLP, GA-classifier, PS-classifier and AN-classifier;

because it has been established on the function optimiza-
tion and like the other optimization algorithms it needs a
large amount of time for convergence. However, the time
taken during testing is very small for the proposed classifier;
because the decision hyperplanes have been already
obtained in training phase. On the contrary, in high dimen-
sional feature spaces the k-NN classifier takes significant
amount of time for testing.

A theoretical analysis of the LA-classifier, study on
over-fitting, over-learning, reliability, and resemblance of
the LA-classifier and study on how its parameters affect
convergence and performance are topic tasks for future
works.
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